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ABSTRACT

This paper represents an exploratory research analysis intended to find whether an Exponential Random Graph (ERG)
model fits a hypothetical social network (HSN). This HSN forms a graph “G” which mathematically is represented by
two subsets G{N, E} where “N" is the number of nodes (actors) N ={1,2,3,...,n} and E ={1,2,3,...,1} is the number of
directed ties (arcs). The adjacency matrix (or Sociomatrix 1) of “G” has binary [0,1] off-diagonal entries, where x;; = 1 if
there is a tie i » j from actor “i” to actor “j”, and O otherwise. Thus, the HSN is a 20x20 non-symmetric sociomatrix,
with row marginals =5 V “i”, and main diagonal (x; = 0) not defined but set to 0 by convention. Sociomatrix 1 was
manually created resembling egocentric data, where actor (farmer) “i” (called “ego”) was asked to name five other
farmers (usually called “alters”) with whom s/he would be willing to collaborate and partner up for a hypothetical (bu
possible) project related with the improvement and maintenance of the irrigation system’s infrastructure. Framers were
randomly assigned into one out of three categories of an ordinal variable which represents farmer’s socioeconomic
status (SES), coded [1,2,3] from low to high SES, then ties were formed to intentionally match farmer’s SES crating
thus homophily ties. Sociomatrix 1 was once randomly permuted to form Sociomatrix 2. We test on both Sociomatrices
a single null hypothesis Ho: Irrigation System (IS) users’ willingness to cooperate is less likely to occur within
individuals sharing a similar SES (no SES heterophily); Ha: IS user’s willingness to cooperate is more likely to occur
within individuals sharing a similar SES (SES homophily).

The goodness of fit of the data to the ERG model proposed provided insights for the analytic potentials of a future
empirical social network derived from case studies.

| Irrigation | Commons | Social Networks | ERGM|

1. Introduction
Statistical exponential family models (Wasserman and Pattison 1996) are a generalization of the Markov
random graph models introduced by Frank and Strauss (1986), which in turn are derived from developments in
spatial statistics (Besag 1974) [taken from: Handcock (2003)].
ERG modeling is a statistical technique for modeling structural properties of networks (Snijders et al., 2006).
The importance of statistical network analysis resides in the fact that whatever we conclude from a social
network we need to evaluate its significance. A statistical model allows a researcher to perform comparisons of
the observed effects to hypothesized effects, as well as significance tests to determine whether an effect is due
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to sampling variability (Wasserman and Faust, 1994). The model should provide theoretically plausible
interpretations about the type of effects that might have produced the network

2. Software
ERG Models of social network structure are fit using R package statnet. Statnet is a set of statistical
network analysis routines in the R environment (Handcock et al, 2004).

3. Model specification: cross-sectional models for ERG

There are different authors which mathematically specify the ERG models in different ways here we try to
adapt and unify some of them (Knoke and Yang (2008); Pattison and Robin (2008); Goodreau et al. (2009)). In
ERG models there are a fixed number of actors and the possible arcs among nodes of a network are regarded as
random variables (Robins et al. 2007).

The range of substantially motivated network statistics that might be included in the model is vast. Our
choice of observable variables will be determined by what we want to predict or learn about, what model’s
goodness-to-fit we want, how powerful our computers are, and what is possible to measure. Here we consider
only a few key statistics (Hunter et al. 2008). We have a uniform distribution conditional on 2 network statistics
(structural configurations) and one node covariates:

U|Zg, Zp, Zow
Where:
Zge = Xij is the choice (total number of arcs) explanatory variable.
Z,= Zi<j X;jXj; is the mutuality variable (number of mutual ties).
Zow =2 x,-]-G,-]- is the mutuality variable within a type.

Let’s consider 8 = {0e, p, Bw} a vector of “k” parameters to be estimated, 8;; is a binary indicator that
equals 1 ifiand j are the same type and 0 otherwise. The binary random variable x;; indicates whether there
exists a tie between nodes iand j (x;; = 1) or not (x;; = 0).

Z(xi‘;-) and Z(xl_]) are vectors of raw data for various independent or explanatory variables, the superscript
+ or —sign indicates whether a tie is present or not. The superscript “c” stands for complement, xf] denotes the
status of all dyads in X except x;;, so that xfj is in a sense “everything else”(do not confuse it with the
normalizing constant “c”).

Pr = (xy = 1|xj; B exp{0,}Z;(x};)

Pr = (x; = 0|xici) exp{ek}Zk(xi‘j)
Taking the natural log of both sides:

= exp{ﬂk[lk(x?j) - Zk(xi_j)]}

Pr = (xii = 1|xfi)
Pr = (Xii = leg)

log = ek[zk(xz-j) - Zk(xi_j)]

The values of the independent variables (graph statistics) are the differences of the aggregated values of
those variables of the entire graph when a given tie from i to j forced to be changed from being present to
being absent. Thus:

Change in choice: 9Zg, = ¥ x; — X x;;
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Change in choice within a type: 9Zg,, = ¥ x{;8;; — X x;; 6;;

Change in mutuality:pZ, = Y1 x;;x;; — Xic; Xij%;;

For an example of how these statistics are calculated see Knoke and Yang (2008).
Goodreau et al. (2009) specify the model as:

k
PX =% = (Vo)exp| ) 0,20
k=1

Where:

X is arandom network.

Z, model’s covariates, this term can be expanded as:

Zi{x, W3}, W = where the ijkth element is the covariate of the k™ attribute of the ijth dyad; and “x” =
attributes specific to the individuals.

0 = {6e, p, Ow} a vector of “k” unknown parameters to be estimated.

The denominator “c” represents the quantity from the numerator summed over all possible networks of
order “n”, constraining the probability to sum 1.

Pr = (x.. = 1|x
logl r (Xl] |x1]) — lOglt[Pr(xl] = 1|x1c])]

Pr = (Xii = 0|X::]

K
logit[Pr(x; = 1|x§)] = Z 0, PZy (X)
i=1

The logit formulation clarifies the interpretation of the 0 vector: if forming a tie increases Z, by 1, then
ceteris paribus the log-odds of that tie forming increases by 6,. Note that a single tie may affect multiple Z,
statistics (Goodreau et al. 2009). 0y, it can be interpreted as the increase in the conditional log-odds of a
partnership between individuals “i” and “j” induced by the formation of the tie and conditional on all other ties
remaining unchanged (Handcock, 2003b).

Expanding the model above:

Pr(x;; = 1|x§) = (1/c)exp[8pe@Zoe (X) + 09y 9Zow (X) + 0,0Z,(X)]

Expressed in words, the equation above states that the probability that an ERG model generated graph is
identical to an observed graph is equal to a (generally small but intractable to calculate) constant (1/c)
multiplied by the exponent of the sum of the parameters multiplied by the graph statistics (counts) of all the
components in the model (Harriagan, 2007).

4. Estimation

The aim when attempting to generate an ERG model is to find the set of parameters which maximize the
probability that any random graph generated by simulating the ERG model will be identical to the observed
network (Harriagan, 2007).

The constant (1/c) is the sum exp{8;Z, (X)} for the 2*(*~1) graphs (the whole sample space of allowable
networks). For graphs n<6, it is feasible to compute (1/c) explicitly, but for large graphs in the dyad dependent
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case the 1/c constant is intractable (because “c” is an astronomically large number). As a result, Maximum
Likelihood Estimates (MLE) for dyad dependent models is not available (Strauss and lkeda, 1990). The MPLE is
the product of the probabilities of x;; with each probability conditional on the rest of the data. This model does
not depend on the normalizing constant 1/c:

)= (Pr=x;

(Pr = x:;) +(Pr= xl")

The MPLE has the disadvantage that it is an approximate representation of the true joint distribution.
These models use local conditional probability distribution so they are not required to factor the full joint
distribution (Xiang and Neville, 2008). Because the properties of the MPLE are not well-understood, the more
recent body of work has developed the previously mentioned MCMCMLE (Wasserman and Robins, 2005).

In addition to the problem of the normalizing constant “c”, we have variables which are highly correlated.
For instance we expect having dependence within each row (outgoing), dependence within each column
(ingoing) where popularity choices lead to more choices; structural configurations are highly correlated by
definition, for instance: an edge is the same as 1-star and many 1-stars form k-stars substructures.

In Statnet, when the ERG model is a dyadic independent model not containing the mutual or asymmetric
terms, the true likelihood (MLE) and the MPLE are the same, which is to say that the true MLE may be found via
the MPLE computation (Hunter et al. 2008).

Pr = (xii = 1|xicj

The most advanced method used to estimate the parameters of an ERG model in current software is the
Markov Chain Monte Carlo Maximum Likelihood Estimation (MCMCMLE). The basic method of the MCMCMLE
estimation of parameters for the ERG models involves the simulation of a set of random graphs from a starting
set of estimated parameter values and then the refinement of the parameter values by comparing the
simulated graphs with the observed graph. A computer program using MCMCMLE procedure generally repeats
this process until the parameter estimates stabilize (converge) (Harrigan, 2007).

Table 1. Social Networks statistical models estimators

Estimators Important features

Maximum Pseudo e May be poor for models with strong global dependence

Likelihood Estimate (Handcock, 2003).

(MPLE) e In Statnet, MPLE only=TRUE, it’s a function to return the
MPLE estimates.

MCMCMLE e Recommended for dyadic dependence models (Goodreau,
2007).

e If we included network specific (dependent) statistics and
once we attempt to account for this dependence we can no
longer estimate the model using simple logistic regression.

Maximum Likelihood e For edge and dyad independence models. Dyadic

Estimate (MLE) independence: P(X;; = x;;) is independent of P (X, =
x) V(1)) # (kD)

e Aninadequate but simple model can be fitted by applying
logistic regression, assuming independent tie variables
(Snijders).
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5. Data

The sociomatrix (Matrix 1) below was manually created on an Excel spreadsheet to intentionally show a
tendency of individuals of the same family (show as three different colors at the header) to form a tie. The
sociomatrix is a digraph simulating the answer to a name generator as:

“If you had to form a 5-member working group (e.g. to work in a Water User Association project to improve
and maintain the irrigation system infrastructure, acquire a tractor), based on your experience, mention at least
5 persons in a descending preference with whom you would like to partner up”.

Thus we have a 20x20 asymmetric X sociomatrix, and a 20x1 vector of nodal covariates. The entries of the X
matrix, termed adjacency matrix (or sociomatrix) are all Os and 1s, with x;=1 indicating the presence of an edge
between i and j. Because self-nomination was disallowed x;=0 V i.

Table 2. Hypothetical sociomatrix (Matrix 1), where 20 farmers were asked to nominate 5 alters (header colors indicates
“families” and SES indicates the socio economic status) See this sociomatrix graph on Figure 1
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Figure 1 (2) depicts Matrix 1(2) graphically, where the size and color of the nodes represent covariates
measured at the individual’s level (SES).



Luis Alan Navarro / ARL930

Using R a vector of numbers from 1 to 20 was randomly reordered. The matrix above was randomly
permuted in Ucinet 6 (using the previous vector). The entries of the randomly permuted matrix were replaced
on the original Matrix 1, so the SES attribute column, headers and row labels remained the same. The randomly

permuted sociomatrix can be seen below:

Table 3. Matrix 2 randomly permuted sociomatrix. See its Graph on Figure 2

10 11 12 13 14 15 16 17 18 19 20 SES

9

8

10
11
12
13
14
15
16
17
18
19
20
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Hypothetical Social Network,
20 Farmers were asked to nominate 5 Alters,
node’s color = Socio Economic Status

Figure 1

Hypothetical Social Network,
20 Farmers Randomly Nominate 5 Alters,
node's color = Socio Economic Status

Figure 2
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6. Results

Table 4. Approximate maximum likelihood results for a standard ERG model, Matrix 1: hypothetical sociomatrix

Network Model 01* Model 02° Model 03“
Statistics
Density -1.0296" -1.5268" -1.8573"
Mutuality 1.5266 1.2262"
Homophily
Same SES 1.1388
AIC 440.01 405.39 388.62
BIC 443.95 413.27 400.44
AMLE=MPLE
BMonte Carlo MLE, warning: standard errors are suspect due to possible poor

convergence
“Monte Carlo MLE

The probability of a configuration being present in a network is expressed in an ERG model in the form of
parameters 8. The parameter values can be read like parameter values of a standard logistic regression, on a
log-odds scale controlled for structural effects (Snijders et al. 2006). Statistics with positive values express
greater than chance probability of being present in a graph produced by the model (exp®*/(1 — exp®) when
0,>0 the probability > 0.50), statistics with a negative parameter (exp®k /(1 — exp®*) when 0,<0 the probability
< 0.50) have a less than a change of being present. A close to O statistics represent a 50/50 chance.

The significance test performed on each of the parameters, the results of which are expressed by asterisks
(three asterisks p<0.001), involve the usual null hypotheses that the true parameter values equal 0.

In this example, the negative density parameter indicates that arcs occur relatively rarely, especially if they
are not part of a reciprocated relationship or if they are not formed within the same SES.

Table 5. Approximate maximum likelihood results for a standard ERG model, Matrix 2: hypothetical permuted

sociomatrix

Network Model 01* Model 02° Model 03*

Statistics
Density -1.0296 -1.5285 -1.5230
Mutuality 1.5244" 1.5276
Homophily
Same SES -0.001
AlC 440.01 405.39 407.39
BIC 443.95 413.27 419.21
AMLE=MPLE
BMonte Carlo MLE, warning: standard errors are suspect due to possible poor
convergence

“Monte Carlo MLE

The positive parameter for SES (homophily) (see Table 4) reflects that actors who are similar on SES have a
higher tendency to collaborate with each other, which contribute to a positive network autocorrelation on SES.
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The amount of deviance explained by the model was checked using the AIC (Akaike Information Criterion)
and the BIC (Bayesian Information Criterion), a model is judged better than another model if it has a smaller AIC
(or BIC) value.

For Sociomatrix 2 (see Table 5) the network statistics (density and mutuality) remained the same (as in
Table 4) because in the permutation process, all rows and columns of the matrix are permuted identically. That
is, if row 3 and row 7 are switched, the columns 3 and 7 are switched in the same manner. This form of
permutation is a tantamount to “relabeling” of the matrix (actors switch places) while the structure of the
network remains unchanged under each permutation. This can be proven checking the dyad census for both
matrices which is the same: {Mutual: 25; Asymmetric: 50; Null: 115}. Matrix 2 is a “relabeled” matrix which has
a systematic structure (non-randomness). A Bernoulli graph of the same order (n=20) and the same number of
edges (100) would not have had a significant mutuality parameter.

As expected, after Matrix 1 was permuted, the SES homophily parameter was no longer statistically
significant and close to 0 (6,, =-0.001).

7. Goodness of fit: how networks look compared to real life networks?

The graphs below are the distribution of frequencies of the minimum geodesic distances for Model 03 of
Matrix 1 (Figure 3) and Matrix 2 (Figure 4). What we basically do is choosing a network statistic that’s not in the
model and comparing the value of this statistic observed in the original network to the distribution of values we
get in the simulated networks from our model (Butts et al 2009). In this case, the geodesic from node i to
another node j is a path of minimum length. The geodesic distribution is the distribution of frequencies of the
geodesic distances (d;; = d; V n(n-1)/2 unordered dyads “d” for a graph “G” of order “n”) (Pattison and Robins,
2008). If the model is a good fit to the observed data, then networks drawn from this distribution will be more
likely to “resemble” the observed data (Butts et al 2009). For examples interpreting the goodness of fit
diagnostic graphs consult Hunter et al. (2008). Thus, the dark black line represents the geodesics of the original
network, the boxplots represent the distribution across all simulated networks, and the soft lines connect the
95% bounds on these distributions. If the dark line were off the 95% envelope, we would have concluded a
poor fit of data to the model. A particular model could fit properly for some statistics and very poorly on others.

Thus we propose to consider an additional statistic: the edge wise shared partner (EWSP) distribution.
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Goodness-of-fit diagnostics

propomon of dyads

minimum gecdesic distance

Figure 3. Graphical test of the goodness-of-fit, Matrix 1, Model 03, for geodesic distance

The EWSP distribution consists of the values EP,/E, ..., EP,,_, /E, where E denotes the total number of
edges and EP; equals the number of edges whose endpoints both share edges with exactly “s” other nodes
(Hunter et al. 2008).

Goodness-of-fit diagnostics

propomion of dyads

minimum gecdesic distance

Figure 4. Graphical test of the goodness-of-fit, Matrix 2, Model 03, for geodesic distance

If the observed network is not typical of the simulated network for a particular statistic, then the model is
either degenerate (if the statistic is among those included in the ERG model vector 6,) or poorly fitted (if the
statistic is not included) (Hunter et al. 2008).
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Goodness-of-fit diagnostics

proportion of edges

@dge-wise shared parners

Figure 5. Graphical test of the goodness-of-fit, Matrix 1, Model 03, for edge-wise shared partners

8. Conclusions

It appears that this exploratory model is successful representing structural characteristics of the observed
network. The ERG model fit well to the hypothetical data, the Monte Carlo MLE converged satisfactorily and
the models produced graphs distributions away from the degenerate region of the parameter space (see
figures 4-6).

Despite the fact that we have hypothetical data not meriting a deep interpretation, if we found an
empirical network like this, it would show that individuals are not likely to engage in interactions randomly
(density = -1.8573, p <0.001). Farmers showed a high tendency to reciprocate their relationships (mutuality =
1.2262, p<0.001). The positive coefficient for SES (p <0.001) showed that individuals are more likely to form ties
within the same SES; it increases the odds by 212.3% forming a tie within the same SES than forming one across
SES categories (ef» = ¢11388; (¢11388 _ 1)(100) = 212.3%) controlling for the structural mutuality effect,
ruling out thus our null hypothesis of SES heterophily.

The mutuality effect was slightly moderated after the SES homophily variable was included. This can be
interpreted as evidence that there are organizing principles in this network that go beyond homophilous
selection in creating reciprocity (interpretation made by Snijders et al. 2006).
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